Kohne, B., Praefcke, K. \& Mann, G. (1988). Chimia, 42(4), 139-141.
Langer, E. \& Lehner, H. (1973). Monatsh. Chem. 104(4), 1154 1163.

Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Sheldrick, G. M. (1976). SHELX76. A program for crystal structure determination. Univ. of Cambridge, England.

Sheldrick, G. M. (1986). SHELXS86. A program for crystal structure solution. Univ. of Göttingen, Germany.
Smallman, R. E. (1970). Modern Physical Metallurgy, 3rd ed. London: Butterworth.
Stieiner. Th., Hinrichs, W., Gigg, R. \& Saenger, W. (1991). In preparation.
Steiner, Th., Hinrichs, W., Saenger, W. \& Gigg, R. (1988). Z. Kristallogr. 182, 252-253.

A Single-Crystal Neutron Diffraction Refinement of Benzamide at 15 and 123 K

By Qi Gao,* G. A. Jeffrey \dagger and J. R. Ruble
Department of Crystallography, University of Pittsburgh, Pittsburgh, PA 15260, USA
and R. K. McMullan
Chemistry Department, Brookhaven National Laboratory, Upton, Long Island, NY 11973, USA

(Received 13 September 1990; accepted 13 February 1991)

Abstract

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}, P 2_{1} / c$ with $Z=4$, cell dimensions at 15 K [123K] are $a=5.529(1)$ [5.549(1)], $b=5.033(1)$ [5.033(1)], $c=21 \cdot 343(3)[21.548(4)] \AA, \beta=88.73(1)$ $[89.22(1)]^{c}, V=593.77(1)[601.74(1)] \AA^{3}, D_{m}=1.358$ [$1 \cdot 337$] $\mathrm{g} \mathrm{cm}^{3} .2364$ [2377] symmetry-independent reflections were measured at the Brookhaven High Flux Reactor $[\lambda=1.0411(1) \AA$]. Structure refinement gave values of $R\left(F^{2}\right)=0.044$ [0.063]. A rigid-body thermal motion analysis was applied. The internal modes for the $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bonds were calculated. The benzene ring has a small B_{5}^{2} distortion, with benzene $\mathrm{C}-\mathrm{C}$ bond lengths, corrected for thermal motion, ranging from $1 \cdot 392(1)$ to $1 \cdot 401(1) \AA$. The internal ring angles are $119 \cdot 7(1)$ to $120 \cdot 1(1)^{\circ}$. The amide bond lengths are $\mathrm{C}-\mathrm{C} 1 \cdot 498(1), \mathrm{C}=\mathrm{O}$ $1 \cdot 246$ (1) and C-N $1 \cdot 341$ (1) \AA. Benzene C-H bond lengths range from $1.084(2)$ to $1.089(2) \AA$ and $\mathrm{N}-\mathrm{H}$ bond lengths are $1 \cdot 013(2)$ and $1 \cdot 022(2) \AA$. The plane of the amide group makes an angle of $25.2(1)^{\circ}$ with the mean plane of the benzene ring.

Introduction

The crystal structure of benzamide was determined by single-crystal X-ray analysis at room temperature by Blake \& Small (1972). We report a neutron diffraction refinement at 15 and 123 K to provide more precise molecular dimensions and for later use

[^0]in a charge-density analysis based on X-ray data at those temperatures.

Experimental

Crystals of benzamide (Sigma Chemical Co.) were grown from benzene solution by slow evaporation. A crystal with dimensions $3.1 \times 1.0 \times 1.4 \mathrm{~mm}$ was selected for diffraction measurements. The data were collected at the Brookhaven High Flux Beam Reactor on the H6M four-circle diffractometer using a monochromated neutron beam obtained by reflection from $\mathrm{Be}(002)$ planes and calibrated against a reference KBr crystal $\left(a_{0}=6 \cdot 6000 \AA\right.$ at 295 K$)$. The temperature of the sample crystal was held within 0.5° of 15 and 123 K inside a closed-cycle helium refrigerator. + Measurements were made first at 15 K and then at 123 K . The lattice parameters, given in Table 1, were determined by least-squares fits to $\sin ^{2} \theta$ vaues for 30 reflections with $52<2 \theta<57^{\circ}$.
\ddagger Air Products and Chemicals, Inc., Displex Model CS-202.

Table 1. Crystal data for benzamide

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}_{2} ;$ space group $P 2_{1} / c ; Z=4$, molecular symmetry 1 .			
	Neutron data $(\lambda=1.0411 \AA)$ (this work)		X-ray data $(\lambda=1.5418 \AA)$ (Blake \& Small, 1972)
	15 K	123 K	295 K
$a(\AA)$	5.529 (1)	5.549 (1)	5.607 (2)
b (${ }_{\text {A }}$)	5.033 (1)	5.033 (1)	5.046 (2)
$c(A)$	21. 343 (3)	21.548 (4)	22.053 (8)
β ()	88.73 (1)	89.22 (1)	89.34
$V\left(\AA^{3}\right)$	593.77 (1)	601.74 (1)	623.90
$D_{\text {n, }}\left(\mathrm{g} \mathrm{cm}^{3}\right)$	1.355	1.337	1.288
$\mu_{n}\left(\mathrm{~cm}^{-1}\right)$	1.857		

Table 2. Atomic coordinates $\left(\times 10^{5}\right)$ and anisotropic thermal parameters $\left(\AA^{2} \times 10^{4}\right)$ for benzamide at 15 K (first line) and 123 K (second line)
Standard deviations given in parentheses refer to the least significant digit. The temperature expression is given by $T=\exp \left(-2 \pi^{2} \sum_{1}{ }^{3} \sum,{ }_{3}{ }^{3} h, h, a_{*}^{*} a{ }_{3}{ }^{*} U_{4}\right)$. Isotropic extinction factor $g=0.206(9) \times 10^{4} \mathrm{rad}^{-1}$ for 15 K data, $0.220(11) \times 10^{4} \mathrm{rad}^{-1}$ for 123 K data.

	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
N	22364 (9)	23934 (10)	2772 (2)	85 (2)	50 (2)	80 (2)	-- 3 (2)	- 28 (2)	9 (2)
	22277 (12)	23983 (13)	2795 (3)	219 (3)	124 (2)	204 (2)	-7 (2)	- 66 (2)	9 (2)
0	19525 (14)	- 19610 (14)	5351 (-1)	78 (3)	42 (3)	93 (2)	- 12 (2)	- 34 (2)	1 (2)
	19589 (21)	-19510 (20)	5334 (5)	237 (5)	103 (4)	261 (5)	- 15 (4)	-107 (4)	- 11 (3)
Cl	47559 (11)	6609 (13)	10983 (3)	55 (2)	43 (2)	54 (2)	-5 (2)	- 14 (2)	3 (2)
	47492 (15)	6764 (17)	10953 (4)	15019)	115 (3)	167 (2)	-6 (3)	- 28 (3)	-13(3)
C2	64802 (11)	26920 (13)	10515 (3)	$66(2)$	58 (2)	67 (2)	-18(2)	-16 (2)	11 (2)
	64748 (17)	26935 (19)	10486 (4)	194 (4)	175 (4)	195 (5)	- 53 (3)	- 29 (3)	2 (3)
C3	82538 (11)	29300 (13)	15027 (3)	60 (2)	66 (2)	80 (2)	-18(2)	-15 (2)	3 (2)
	82423 (17)	29445 (20)	14980 (5)	176 (4)	209 (4)	234 (5)	53 (3)	-37 (3)	-29(3)
C4	82915 (12)	11604 (13)	20061 (3)	65 (2)	73 (3)	7012)	7 (2)	- 22 (2)	2 (2)
	82792 (17)	11971 (21)	19992 (5)	170 (4)	223 (4)	24.3 (5)	-5 (3)	- 69 (3)	-33(3)
C5	65490 (12)	-8397 (13)	20597 (3)	74 (2)	64 (2)	71 (2)	10 (2)	-21 (2)	16 (2)
	65380 (18)	- 7923 (20)	20525 (4)	209 (4)	200 (4)	227 (5)	-4 (3)	-85 (4)	25 (3)
C6	47998 (12)	- 11044 (12)	16046 (3)	67 (2)	47 (2)	70 (2)	- 11 (2)	-22 (2)	12 (2)
	47921 (17)	- 10644 (18)	16000 (4)	183 (4)	145 (4)	208 (5)	-19 (3)	-61 (3)	27 (3)
C7	28666 (11)	2697 (12)	6144 (3)	58 (2)	34 (2)	57 (2)	-2 (2)	- 13 (2)	0 (2)
	28637 (16)	2791 (16)	6140 (4)	169 (4)	106 (3)	167 (5)	-2 (3)	- 39 (3)	-9(3)
H2	64797 (31)	40619 (35)	6580 (8)	266 (7)	213 (7)	191 (7)	-68(6)	- 52 (5)	100 (5)
	64685 (46)	40519 (53)	6556 (11)	466 (13)	398 (12)	344 (9)	170 (10)	- 68 (9)	144 (9)
H3	96052 (29)	45037 (34)	14579 (8)	207 (7)	204 (7)	264 (7)	-109 (6)	- 46 (5)	21 (6)
	95821 (44)	45049 (54)	14538 (12)	377 (12)	422 (13)	494 (14)	-212 (10)	- 72 (10)	10 (11)
H4	96720 (30)	13445 (38)	23605 (8)	214 (7)	270 (8)	198 (7)	- 55 (6)	.. 106 (5)	23 (6)
	96479 (43)	13881 (57)	23501 (12)	352 (11)	490 (14)	423 (12)	. 72 (10)	- 207 (10)	2 (10)
H5	65401 (31)	-21902 (36)	24557 (8)	257 (7)	218 (7)	195 (7)	-38(6)	-63 (5)	98 (5)
	65328 (48)	--21417 (55)	24475 (12)	479 (13)	425 (13)	416 (12)	-68(1i)	- 179 (10)	173 (10)
H6	34517 (29)	- 26746 (34)	16351 (8)	210 (7)	183 (6)	251 (7)	- 92 (6)	-47 (5)	54 (5)
	34514 (43)	--26302 (48)	16299 (12)	389 (11)	302 (10)	457 (12)	- 151 (9)	-142 (9)	115 (9)
H7	8507 (29)	21824 (33)	- 309 (7)	212 (6)	187 (6)	208 (7)	-6 (5)	- 104 (5)	15 (5)
	8546 (39)	21870 (43)	-281 (10)	355 (10)	268 (9)	337 (9)	7 (8)	-161 (8)	12 (8)
H8	26663 (31)	42643 (31)	4172 (80	261 (7)	110 (6)	242 (7)	- 24 (5)	. 66 (5)	-8(5)
	26573 (41)	42622 (40)	4160 (10)	376 (11)	194 (8)	380 (9)	-- 37 (8)	-98(8)	2 (8)

Intensity data for reflections ($+h,+k, \pm l ; h \leq 8, k$ $\leq 7, l_{1} \leq 30$) were measured by the $\omega / 2 \theta$ step-scan method. Scan widths were fixed at $\Delta 2 \theta=3 \cdot 2^{\circ}$ for $\sin \theta / \lambda<0.406 \AA^{-1}$, and were varied as $\Delta 2 \boldsymbol{\theta}=(2.639$ $+2 \cdot 195 \tan \theta)^{\circ}$ at higher angles up to $(\sin \theta / \lambda)_{\text {max }}$ of $0.787 \AA^{-1}$. Counts were accumulated at each step for a preset number of counts of the direct beam requiring $\sim 1.5 \mathrm{~s}$. Between 65 and 90 steps (N) were taken per scan with at least 10% of N at each end being for background counts. The intensities of two test reflections, monitored after every 50 scans, were constant within 3%. Integrated intensities, I, were obtained by subtracting from the cumulative scan counts the background counts estimated from the first and last 10% of the scans. The variances $\sigma^{2}(I)$ were estimated from counting statistics. Absorption corrections (de Meulenaer \& Tompa, 1965; Templeton \& Templeton, 1973) were applied using the μ / ρ value of $2475 \mathrm{~m}^{2} \mathrm{~kg}^{-1}$ for bound hydrogen at $\lambda=$ $1 \cdot 0411 \AA$ (McMullan \& Koetzle, 1979). Transmission factors ranged from 0.752 to 0.845 . The F_{o}^{2} $(=I \cdot \sin 2 \theta)$ values of equivalent 0 kl reflections were averaged [$R_{\text {int }}=0.011(15 \mathrm{~K})$ and $0.013(123 \mathrm{~K})$ for 198 pairs], to give 2364 (15 K) and 2377 (123 K) reflections for the structure refinements.
Initial atomic parameters for the 15 K model were the coordinates of Blake \& Small (1972) and assumed isotropic U values ($0.01 \AA^{2}$ for $\mathrm{C}, \mathrm{N}, \mathrm{O}$, and $0.02 \AA^{2}$ for H). The refined 15 K parameters were
taken as starting values for refinement against the 123 K data. The residuals $\sum w \mid F_{o}^{2}-F_{c}^{2,2}$ were minimized by full-matrix least-squares methods with weights $\quad w=\left[\sigma^{2}\left(F_{o}^{2}\right)+\left(0.02 F_{o}^{2}\right)^{2}\right]^{-1}$. Coherent neutron-scattering lengths were taken from Koester (1977). The variable parameters were: positional and anisotropic thermal parameters of the 16 nonequivalent atoms, one scale factor and the isotropic secondary-extinction parameter for a type I crystal with Lorentzian distribution in mosaic spread (Becker \& Coppens, 1974). Use of anisotropic extinction parameters resulted in no significant improvement in agreements. The indices of fit at convergence $\left(P_{i} / \sigma_{i}<0.01\right)$ were $R\left(F^{2}\right)=0.044,0.063, w R\left(F^{2}\right)=$ $0.057,0.068, S=1.11,1.05$ for the 15 and 123 K data respectively. In final $\Delta \rho$ maps, the largest residuals $|\rho|$ were $1 \cdot 3 \%(15 \mathrm{~K}), 1 \cdot 6 \%(123 \mathrm{~K})$ of $\rho_{\text {max }}$ at the N atom and were within the estimated noise levels of both maps. Extinction corrections $\left(\times F_{o}{ }^{2}\right)>1.05$ were applied to $127(15 \mathrm{~K})$ and $69(123 \mathrm{~K})$ observations, the largest being 1.51 for reflection $10 \overline{4}$ in both data sets. The final nuclear positional and thermal parameters are in Table 2.* The structure determinations were carried out with the least-squares program

[^1]Table 3. Rigid-body thermal motion analysis of benzamide

of Lundgren (1982) and other programs in use at Brookhaven National Laboratory. The atomic notation and thermal ellipsoids at 15 and 123 K are shown in Fig. 1.

Discussion
 Thermal motion analysis and corrections

A rigid-body thermal motion analysis was calculated using ORSBA (Johnson, 1970). The internal motion of the $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bonds at 15 K was calculated using the program FLAP (Craven \& He, 1982). The mean-square amplitudes for the stretching, in-plane half-scissors and wagging motions were $0.0052,0.0204,0.0140 \AA^{2}$ for the $\mathrm{C}-\mathrm{H}$ bonds and

Fig. 1. Atomic notation and thermal ellipsoids for benzamide Upper figure, 15 K ; lower figure, 123 K .

Table 4. Bond lengths (\AA), bond angles (${ }^{\circ}$) and selected torsion angles $\left({ }^{\circ}\right)$ for benzamide

Bond lengths					
	From neutron data (this work)				From X-ray data (Blake \& Small, 1972) Corrected for thermal motion at 295 K
			Corrected for thermal motion*		
	15 K	123 K			
C1-C2	1.400 (1)	1.398 (1)	1.4		1.392 (4)
$\mathrm{C} 1-\mathrm{C} 6$	1.400 (1)	1.397 (1)	1.4		1.389 (4)
$\mathrm{C} 1-\mathrm{C} 7$	1.498 (1)	1.497 (1)	1.4		1.501 (4)
$\mathrm{C} 2-\mathrm{C} 3$	1.395 (1)	1.393 (1)	1.3		1.398 (5)
C3-C4	1.396 (1)	1.393 (1)			1.378 (5)
C4-C5	1.396 (1)	1.395 (1)	1.3		1.390 (5)
C5-C6	1.392 (1)	1.391 (1)			$1 \cdot 400$ (5)
C7-0	1.244 (1)	1.243 (1)			1.249 (3)
C7-N	1.339 (1)	1.337 (1)	$1 \cdot 3$		$1 \cdot 342$ (3)
C2-H2	1.087 (2)	1.088 (3)			
C3-H3	1.092 (2)	1.085 (3)			
C4-H4	1.090 (2)	1.083 (3)			
C5-H5	1.085 (2)	1.089 (3)			
C6- H_{6}	1.087 (2)	1.085 (3)			
$\mathrm{N}-\mathrm{H} 7$	1.026 (2)	1.022 (3)			
$\mathrm{N}-\mathrm{H8}$	1.018 (2)	1.013 (3)			
Bond angles (e.s.d.'s 0.1')					
				15 K	123 K
Benzene ring					
C2-C1-C6				119.7	119.5
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$				$120 \cdot 1$	120.2
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$				$120 \cdot 0$	120.0
C3-C4-C5				$120 \cdot 1$	120.0
C4-C5-C6				$120 \cdot 0$	$120 \cdot 1$
$\mathrm{Cl}-\mathrm{C} 6-\mathrm{C} 5$				$120 \cdot 1$	$120 \cdot 2$
Amide group					
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 7$				122.1	122.1
C6-Cl-C7				118.2	118.4
$\mathrm{Cl}-\mathrm{C} 7-\mathrm{N}$				117.3	117.3
$\mathrm{Cl}-\mathrm{C} 7-\mathrm{O}$				$120 \cdot 3$	$120 \cdot 3$
$\mathrm{O}-\mathrm{C} 7-\mathrm{N}$				$122 \cdot 3$	122.3
$\mathrm{H} 2-\mathrm{C} 2-\mathrm{Cl}$ (e.s.d.s $0 \cdot 2$)$\mathrm{H} 2-\mathrm{C} 2-\mathrm{C} 3$				120.4	120.2
				119.4	119.6
$\mathrm{H} 2-\mathrm{C} 2-\mathrm{C} 3$$\mathrm{H} 3-\mathrm{C} 3-\mathrm{C} 2$				119.5	119.5
H3-C3-C4				120.6	$120 \cdot 5$
$\mathrm{H} 4-\mathrm{C} 4-\mathrm{C} 3$				$120 \cdot 2$	$120 \cdot 2$
$\mathrm{H} 4-\mathrm{C} 4-\mathrm{C} 5$				119.8	119.8
H5-C5-C4				120.5	120.4
H5-C5-C6				119.5	119.5
H6-C6-C5				120.9	120.9
H6-C6- Cl				119.0	118.9
$\mathrm{H} 7-\mathrm{N}-\mathrm{C} 7$				118.0	118.1
$\mathrm{H8}-\mathrm{N}-\mathrm{C} 7$				121.0	121.2
$\mathrm{H} 7-\mathrm{N}-\mathrm{H} 8$				117.8	117.7
Selected torsion angles (e.s.d.'s $0 \cdot 1$)					
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 7-\mathrm{O}$				15 K	123 K
				154.3	153.6
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 7-\mathrm{N}$				-25.4	-26.0
$\mathrm{C} 6-\mathrm{Cl}-\mathrm{C} 7-\mathrm{O}$				- 24.6	-25.3
$\mathrm{C} 6-\mathrm{Cl}-\mathrm{C} 7-\mathrm{N}$				155.8	155.1
$\mathrm{O}-\mathrm{C} 7-\mathrm{N}-\mathrm{H} 7$				5.0	4.9
$\mathrm{O}-\mathrm{C} 7-\mathrm{N}-\mathrm{H} 8$				164.4	$164 \cdot 8$

*Mean of corrected values from 15 and 123 K data. \dagger The libration-motion corrections $\langle+0.020 \AA\rangle$ and anharmonic corrections $\langle-0.020 \AA\rangle$ cancel.
$0.0050,0.0171,0.0134 \AA^{2}$ for the $\mathrm{N}-\mathrm{H}$ bonds. The overall least-squares fit was good with r.m.s. ($U_{i j \text { obs }}$ $-U_{i j}$ calc $)=0.0004(4) \AA^{2}$ at 15 K and 0.0008 (9) \AA^{2} at 123 K . The rigid-body parameters are given in Table 3.
The $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{N}$ and $\mathrm{C}=\mathrm{O}$ bond lengths corrected for librational motion are given in Table 4. The $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bond lengths are corrected for riding motion and anharmonic stretching using $\Delta=$
$-3 k \Delta U / 2$, where ΔU is the difference in thermal motion of the two atoms along the bond and $k=$ $2 \cdot 0 \AA^{-1}$ for $\mathrm{C}-\mathrm{H}^{2 \cdot 2} \AA^{-1}$ for $\mathrm{N}-\mathrm{H}$.

The molecular structure

The bond lengths, valence angles and selected torsion angles are given in Table 4. The benzene ring bond lengths and angles have m symmetry normal to the plane of the benzene ring along the diagonal $\mathrm{Cl}-\mathrm{C} 4$. Both the 15 and 123 K and the thermally corrected bond lengths show that $\mathrm{C} 1-\mathrm{C} 2=\mathrm{C} 1-\mathrm{C} 6$ $>\mathrm{C} 3-\mathrm{C} 4=\mathrm{C} 4-\mathrm{C} 5>\mathrm{C} 2-\mathrm{C} 3 \simeq \mathrm{C} 5-\mathrm{C} 6$, with small, possibly significant, differences of $0.004 \AA$ $(\sim 4 \sigma)$. This is consistent with the trend reported by Domenicano, Vaciago \& Coulson (1975) from the crystal structures of monosubstituted benzene derivatives. The bond-length differences are in the same directions and of the same order of magnitude as reported by Domenicano \& Vaciago (1979) for some aniline and azobenzene derivatives.

The benzene valence angles are $120 \cdot 0^{\circ}$ within 3σ. There is no significant angle closure as observed in tetraphenylmethane (Robbins, Jeffrey, Chesick, Donohue, Cotton, Frenz \& Murillo, 1975) and other compounds containing $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CC}_{3}$ groups (Domenicano \& Vaciago, 1979). The closure of the $\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 6$ angle of $119.7(1)^{\circ}$ is significant at the 3σ level. The ring has a small boat distortion to B_{5}^{2}, with C 2 and C 50.009 (1) and $0.013(1) \AA$ respectively above a plane through $\mathrm{C} 1, \mathrm{C} 3, \mathrm{C} 4$ and C 6 , within which the displacements are $\pm 0 \cdot 0006(9) \AA$. The benzene $\mathrm{C}-\mathrm{H}$ bond lengths are $1.086 \AA$ within 1σ. H 2 , H 3 and H 4 are in the mean plane of the benzene ring within $0.009(2) \AA$, but H5 and H6 are significantly displaced by $+0.031(2)$ and $-0.013(2) \AA$ respectively. H5 is 0.044 (3) \AA from the mean plane of H2, $\mathrm{H} 3, \mathrm{H} 4$ and H 6 .

The amide C7 atom is $-0.038(1) \AA$ out of the mean benzene ring plane. The amide group is twisted so that the $\mathrm{O}-\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2$ torsion angle is

Fig. 2. Hydrogen bonding in the crystal structure of benzamide. Distances are given in \AA, angles in ${ }^{\circ}$.
$154.3(1)^{\circ}$. The angle between the amide plane and the mean benzene ring plane is $25.2(3)^{\circ}$ at 15 K , $25.8(4)^{\circ}$ at 123 K . The amide group is non-planar, with H 7 and $\mathrm{H} 80.076(2)$ and $0.236(2) \AA$ out of the $\mathrm{C} 1, \mathrm{C} 7, \mathrm{O}, \mathrm{N}$ plane. The twist of the amide group out of the benzene plane and the further displacement of H 8 from the amide plane are clearly consequences of the $\mathrm{H} 8 \cdots \mathrm{H} 2$ intramolecular interaction. The $\mathrm{H} 8 \cdots \mathrm{H} 2$ distance of $2 \cdot 480(2) \AA$ would be reduced to $1.77 \AA$ for a fully planar molecule.

The hydrogen bonding

The hydrogen bonding shown in Fig. 2 consists of cyclic dimers linked laterally to form ribbons which extend throughout the crystal in the direction of the b axis. This is the axis which shows least contraction on cooling. The two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonds are shorter and longer respectively than the mean value of $1.934 \AA$ for amides reported by Taylor, Kennard \& Versichel (1984). As commonly observed, the smaller $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angle is associated with the longer bond. The coordination about the carbonyl O atom is close to being planar with the sum of angles equal to 354°.

This research was supported by grant No. CHE8610688 from the National Science Foundation. The neutron data collection as carried out at Brookhaven National Laboratory under contract DE-AC0276 CH 00016 with the US Department of Energy and supported by its Office of Basic Energy Sciences.

References

Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-147.
Blake, C. C. F. \& Small, R. W. H. (1972). Acta Cryst. B28, 2201-2206.
Craven, B. M. \& He, X.-M. (1982). FLAP. Programs for Thermal Motion Analysis. Tech. Rep. Department of Crystallography, Univ. of Pittsburgh, USA.
Domenicano, A. \& Vaciago, A. (1979). Acta Cryst. B35, 13821388.

Domenicano, A., Vaciago, A. \& Coulson, C. A. (1975). Acta Cryst. B31, 221-234.
Johnson, C. K. (1970). Thermal Neutron Diffraction, edited by B. T. M. Willis, ch. 9, pp. 132-159. Oxford Univ. Press.

Koester, L. (1977). Springer Tracts in Modern Physics, Neutron Physics, edited by G. HöHLER, p. 36. Berlin: Springer.
Lundgren, J.-O. (1982). UPALS. A Full-Matrix Least-Squares Refinement Program. Report UUIC B13-4-05. Institute for Chemistry, Univ. of Uppsala, Sweden.
McMullan, R. K. \& Koetzle, T. F. (1979). Unpublished work.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014 1018.

Robbins, A., Jeffrey, G. A., Chesick, J. P., Donohue, J., Cotton, F. A., Frenz, B. A. \& Murillo, C. A. (1975). Acta Cryst. B32, 2395-2399.
Taylor, R., Kennard, O. \& Versichel, W. (1984). Acta Cryst. B40, 280-288.
Templeton, L. K. \& Templeton, D. H. (1973). Am. Crystallogr. Assoc. Meet., Storrs, CT, Abstracts, p. 143.

[^0]: * Present address: Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
 \dagger Author for correspondence.

[^1]: * Lists of observed and calculated structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54030 (35 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

